All finitely axiomatizable subframe logics containing the provability logic CSM 0_{0} are decidable

نویسنده

  • Frank Wolter
چکیده

In this paper we investigate those extensions of the bimodal provability logic CSM 0 (alias PRL 1 or F ?) which are subframe logics, i.e. whose general frames are closed under a certain type of substructures. Most bimodal provability logics are in this class. The main result states that all nitely axiomatizable subframe logics containing CSM 0 are decidable. We note that, as a rule, interesting systems in this class do not have the nite model property and are not even complete with respect to Kripke semantics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All Nitely Axiomatizable Subframe Logics Containing the Provability Logic Csm 0 Are Decidable

In this paper we investigate those extensions of the bimodal provability logicCSM0 (alias PRL1 or F ) which are subframe logics, i.e. whose general frames are closed under a certain type of substructures. Most bimodal provability logics are in this class. The main result states that all nitely axiomatizable subframe logics containing CSM0 are decidable. We note that, as a rule, interesting syst...

متن کامل

Frame Based Formulas for Intermediate Logics

In this paper we define the notion of frame based formulas. We show that the well-known examples of formulas arising from a finite frame, such as the Jankov-de Jongh formulas, subframe formulas and cofinal subframe formulas, are all particular cases of the frame based formulas. We give a criterion for an intermediate logic to be axiomatizable by frame based formulas and use this criterion to ob...

متن کامل

Canonical Formulas for Wk4

We generalize the theory of canonical formulas for K4 (the logic of transitive frames) to wK4 (the logic of weakly transitive frames). Our main result establishes that each logic over wK4 is axiomatizable by canonical formulas, thus generalizing Zakharyaschev’s theorem for logics over K4. The key new ingredients include the concepts of transitive and strongly cofinal subframes of weakly transit...

متن کامل

A New Criterion of Decidability for Intermediate Logics

In this paper I study Lukasiewicz-style refutation procedures (cf. [8], also [3]) for intermediate logics as a method of obtaining decidability results. This method proves to be more general than Harrop’s criterion (cf. [4]) saying that every finitely axiomatizable logic with the finite model property is decidable. There are 2א0 intermediate logics without the f.m.p. (cf. [1], [2]). I give a mo...

متن کامل

On Bimodal Logics of Provability

We investigate the bimodal logics sound and complete under the interpretation of modal operators as the provability predicates in certain natural pairs of arithmetical theories (F’, ?2). Carlson characterized the provability logic for essentially reflexive extensions of theories, i.e. for pairs similar to (PA, ZF). Here we study pairs of theories (F’, %!) such that the gap between F and Q is no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arch. Math. Log.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 1998